Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Des ; 2352023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38037589

RESUMO

Micro-computed X-ray tomography (µCT) is a volumetric imaging tool used to quantify the internal structure of materials. µCT imaging with mechanical testing (in situ µCT) helps visualize strain-induced structural changes and develop structure-property relationships. However, the effects on thermophysical properties of radiation exposure during in situ µCT imaging are seldom addressed, despite potential radiation sensitivity in elastomers. This work quantifies the radiation dosage effect on thermo-, chemical-, and mechanical-properties for a vinyl nitrile-based foam. Material properties were measured after (0, 1, 2, and 3) days at (8.1 ± 0.9) kGy/d. Morphological characteristics were investigated via scanning electron microscopy. Thermal transitions were assessed using differential scanning calorimetry. Viscoelasticity was measured with dynamic mechanical analysis over a range from -30 °C to 60 °C. Higher dose lead to stiffening and increased dissipation. Chemical structure was assessed with Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy. Soxhlet extraction was used to measure gel content. In summary, substantial changes occur in thermophysical properties, which may confound structure-property measurements. However, this also provides a modification pathway. Quantitation and calibration of the properties changes informed a finite element user material for material designers to explore tunablity and design optimization for impact protection engineers.

2.
J Vis Exp ; (199)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37843299

RESUMO

Recently, there has been a significant effort towards reducing or mitigating CO2 emissions through the use of carbon capture materials for point source or direct air capture (DAC) methods. This work focuses on amine-functionalized CO2 adsorbents for DAC. These materials show promise for CO2 removal because they have low regeneration energy consumption and high adsorption capacity. The incorporation of amine species into a porous substrate combines the advantages of the amine species' affinity to CO2 with the large pore volumes and surface areas of the porous substrate. There are three methods commonly used to prepare amine-based CO2 sorbents, depending on the selection of the amine species, material support, and preparation method. These methods are impregnation, grafting, or chemical synthesis. Silica is a prevalent choice of substrate material because of its adjustable pore size, moisture tolerance, temperature stability, and ability to adsorb CO2 in low concentrations for DAC applications. Typical synthetic procedures and primary attributes of both impregnated and grafted amine-silica composites are described herein.


Assuntos
Aminas , Carbono , Dióxido de Carbono , Dióxido de Silício , Adsorção
3.
Polymers (Basel) ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36987127

RESUMO

The construction of ballistic-resistant body armor is experiencing an increasing use of flexible unidirectional (UD) composite laminates that comprise multiple layers. Each UD layer contains hexagonally packed high-performance fibers with a very low modulus matrix (sometimes referred to as binder resins). Laminates are then made from orthogonal stacks of these layers, and these laminate-based armor packages offer significant performance advantages over standard woven materials. When designing any armor system, the long-term reliability of the armor materials is critical, particularly with regard to stability with exposure to temperature and humidity, as these are known causes of degradation in commonly used body armor materials. To better inform future armor designers, this work investigates the tensile behavior of an ultra-high molar mass polyethylene (UHMMPE) flexible UD laminate that was aged for at least 350 d at two accelerated conditions: 70 °C at 76% relative humidity (RH) and 70 °C in a desiccator. Tensile tests were performed at two different loading rates. The mechanical properties of the material after ageing demonstrated less than 10% degradation in tensile strength, indicating high reliability for armor made from this material.

4.
Polymers (Basel) ; 14(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35406198

RESUMO

Ultra-high molar mass polyethylene (UHMMPE) is commonly used for ballistic-resistant body armor applications due to the superior strength of the fibers fabricated from this material combined with its low density. However, polymeric materials are susceptible to thermally induced degradation during storage and use, which can reduce the high strength of these fibers, and, thus, negatively impact their ballistic resistance. The objective of this work is to advance the field of lightweight and soft UHMMPE inserts used in various types of ballistic resistant-body armor via elucidating the mechanisms of chemical degradation and evaluating this chemical degradation, as well as the corresponding physical changes, of the UHMMPE fibers upon thermal aging. This is the first comprehensive study on thermally aged UHMMPE fibers that measures their decrease in the average molar mass via high-temperature size exclusion chromatography (HT-SEC) analysis. The decrease in the molar mass was further supported by the presence of carbon-centered free radicals in the polyethylene that was detected using electron paramagnetic resonance (EPR) spectroscopy. These carbon-centered radicals result from a cascade of thermo-oxidative reactions that ultimately induce C-C ruptures along the backbone of the polymer. Changes in the crystalline morphology of the UHMMPE fibers were also observed through wide-angle X-ray diffraction (WAXS), showing an increase in the amorphous regions, which promotes oxygen diffusion into the material, specifically through these areas. This increase in the amorphous fraction of the highly oriented polyethylene fibers has a synergistic effect with the thermo-oxidative degradation processes and contributes significantly to the decrease in their molar mass.

5.
J Vis Exp ; (169)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33818564

RESUMO

Light-weight, protective armor systems typically consist of high modulus (>109 MPa) and high-strength polymeric fibers held in place with an elastic resin material (binder) to form a non-woven, unidirectional laminate. While significant efforts have focused on improving the mechanical properties of the high-strength fibers, little work has been undertaken to improve the properties of the binder materials. To improve the performance of these elastomeric polymer binders, a relatively new and simple fabrication process, known as solution blow spinning, was used. This technique is capable of producing sheets or webs of fibers with average diameters ranging from the nanoscale to the microscale. To achieve this, a solution blow spinning (SBS) apparatus has been designed and built in the laboratory to fabricate non-woven fiber mats from polymer elastomer solutions. In this study, a commonly used binder material, a styrene-butadiene-styrene block-co-polymer dissolved in tetrahydrofuran, was used to produce nanocomposite fiber mats by adding metallic nanoparticles (NPs), such as iron oxide NPs, that were encapsulated with silicon oil and thus incorporated in the fibers formed via the SBS process. The protocol described in this work will discuss the effects of the various critical parameters involved in the SBS process, including the polymer molar mass, the selection of the thermodynamically appropriate solvent, the polymer concentration in solution, and the carrier gas pressure to assist others in performing similar experiments, as well as provide guidance to optimize the configuration of the experimental setup. The structural integrity and morphology of the resultant non-woven fiber mats were examined using scanning electron microscopy (SEM) and elemental X-ray analysis via energy-dispersive X-ray spectroscopy (EDS). The goal of this study is to evaluate the effects of the various experimental parameters and material selections to optimize the structure and morphology of the SBS fiber mats.


Assuntos
Nanocompostos/química , Equipamento de Proteção Individual/normas , Humanos
6.
J Control Release ; 305: 41-49, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31100312

RESUMO

DNA nanostructures hold great potential for drug delivery. However, their specific targeting is often compromised by recognition by scavenger receptors involved in clearance. In our previous study in cell culture, we showed targeting specificity of a 180 nm, 4-layer DNA-built nanocarrier called 3DNA coupled with antibodies against intercellular adhesion molecule-1 (ICAM-1), a glycoprotein overexpressed in the lungs in many diseases. Here, we examined the biodistribution of various 3DNA formulations in mice. A formulation consisted of 3DNA whose outer-layer arms were hybridized to secondary antibody-oligonucleotide conjugates. Anchoring IgG on this formulation reduced circulation and kidney accumulation vs. non-anchored IgG, while increasing liver and spleen clearance, as expected for a nanocarrier. Anchoring anti-ICAM changed the biodistribution of this antibody similarly, yet this formulation specifically accumulated in the lungs, the main ICAM-1 target. Since lung targeting was modest (2-fold specificity index over IgG formulation), we pursued a second preparation involving direct hybridization of primary antibody-oligonucleotide conjugates to 3DNA. This formulation had prolonged stability in serum and showed a dramatic increase in lung distribution: the specificity index was 424-fold above a matching IgG formulation, 144-fold more specific than observed for PLGA nanoparticles of similar size, polydispersity, ζ-potential and antibody valency, and its lung accumulation increased with the number of anti-ICAM molecules per particle. Immunohistochemistry showed that anti-ICAM and 3DNA components colocalized in the lungs, specifically associating with endothelial markers, without apparent histological changes. The degree of in vivo targeting for anti-ICAM/3DNA-nanocarriers is unprecedented, for which this platform technology holds great potential to develop future therapeutic applications.


Assuntos
DNA/metabolismo , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Imunoconjugados/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Animais , DNA/farmacocinética , Portadores de Fármacos/farmacocinética , Imunoconjugados/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/análise , Ratos , Distribuição Tecidual
7.
Polymers (Basel) ; 11(5)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137768

RESUMO

To improve properties such as thermal conductivity, low temperature thermal strain, and creep resistance of ultra-high molar mass polyethylene (UHMMPE) fibers, several researchers have previously undertaken efforts to crosslink these fibers using radiation. Ionizing radiation is commonly used to crosslink bulk UHMMPE in other applications, such as artificial joints. However, UHMMPE fibers differ from bulk UHMMPE in that they have a higher crystallinity (approximately 85% to 90%) and are very highly oriented during manufacturing in which the fibers are stretched 50 to 100 times their original length. Thus, the amorphous fraction of the UHMMPE fibers is also highly ordered. Several experiments were conducted to crosslink the UHMMPE fibers using both low dose rate (gamma) and high dose rate (electron beam) irradiation, all in the absence of oxygen. In all cases, the tensile strength of the fiber was greatly reduced by the irradiation. The oxidation index was also measured for the irradiated samples, and oxidation was not found to play a major role in the reduction of tensile strength in the fibers after irradiation. While this work did not achieve the desired result of improving the mechanical properties of the UHMMPE fiber, a significant result was found. The electron paramagnetic resonance (EPR) spectrum of the UHMMPE fibers was measured shortly after irradiation, and a mixture of allyl and alkyl radicals were detected. The irradiated samples were stored in dark ambient conditions for at least six years, then reexamined using EPR for free radical characterization. Surprisingly, the gamma-irradiated samples showed clear evidence of long-lived polyenyl radicals present in the material. Free radicals are very reactive species that will typically migrate to the surface of the crystalline domain and decay in a relatively short time through various reactions in the amorphous regions. It is hypothesized herein that due to the high crystallinity and large anisotropy of the highly drawn UHMMPE fiber, the polyenyl radicals were trapped in the crystal phase and were unable to migrate and decay. An experiment was performed to test this hypothesis, by which samples of the irradiated fibers were heated to temperatures above first the alpha relaxation and then melting point of polyethylene, and EPR measurements were taken. Results showed that the polyenyl radical signal persisted below the Tm, but was rapidly eliminated upon melting of the crystals. These experiments support the hypothesis that the long-lived polyenyl radicals are trapped in the crystalline region of the polyethylene fibers.

8.
J Vis Exp ; (139)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222168

RESUMO

Traditionally, soft body armor has been made from poly(p-phenylene terephthalamide) (PPTA) and ultra-high molecular weight polyethylene. However, to diversify the fiber choices in the United States body armor market, copolymer fibers based on the combination of 5-amino-2-(p-aminophenyl) benzimidazole (PBIA) and the more conventional PPTA were introduced. Little is known regarding the long-term stability of these fibers, but as condensation polymers, they are expected to have potential sensitivity to moisture and humidity. Therefore, characterizing the strength of the materials and understanding their vulnerability to environmental conditions is important for evaluating their use lifetime in safety applications. Ballistic resistance and other critical structural properties of these fibers are predicated on their strength. To accurately determine the strength of the individual fibers, it is necessary to disentangle them from the yarn without introducing any damage. Three aramid-based copolymer fibers were selected for the study. The fibers were washed with acetone followed by methanol to remove an organic coating that held the individual fibers in each yarn bundle together. This coating makes it difficult to separate single fibers from the yarn bundle for mechanical testing without damaging the fibers and affecting their strength. After washing, fourier transform infrared (FTIR) spectroscopy was performed on both washed and unwashed samples and the results were compared. This experiment has shown that there are no significant variations in the spectra of poly(p-phenylene-benzimidazole-terephthalamide-co-p-phenylene terephthalamide) (PBIA-co-PPTA1) and PBIA-co-PPTA3 after washing, and only a small variation in intensity for PBIA. This indicates that the acetone and methanol rinses are not adversely affecting the fibers and causing chemical degradation. Additionally, single fiber tensile testing was performed on the washed fibers to characterize their initial tensile strength and strain to failure, and compare those to other reported values. Iterative procedural development was necessary to find a successful method for performing tensile testing on these fibers.


Assuntos
Teste de Materiais/métodos , Polímeros/química , Resistência à Tração/fisiologia
9.
Polymers (Basel) ; 10(6)2018 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-30966706

RESUMO

This article demonstrates that ionizing radiation induces simultaneous crosslinking and scission in poly(trimethylene carbonate-co-d-lactide) diblock and random copolymers. Copolymer films were electron-beam (EB) irradiated up to 300 kGy under anaerobic conditions and subsequently examined by evaluation of their structure (FT-IR, NMR), molecular weight, intrinsic viscosities, and thermal properties. Radiation chemistry of the copolymers is strongly influenced by the content of ester linkages of the lactide component. At low lactide content, crosslinking reaction is the dominant one; however, as the lactide ratio increases, the ester linkages scission becomes more competent and exceeds the crosslinking. Electron paramagnetic resonance (EPR) measurements indicate that higher content of amorphous carbonate units in copolymers leads to a reduction in free radical yield and faster radical decay as compared to lactide-rich compositions. The domination of scission of ester bonds was confirmed by identifying the radiolytically produced alkoxyl and acetyl radicals, the latter being more stable due to its conjugated structure.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30996496

RESUMO

This work demonstrates the synergy between the thermo-mechanical and humidity induced degradation as well as the oxidation reactions in the kink-banded areas of ultra-high molar mass polyethylene (UHMMPE) fiber-based laminates used in body armor. For aged materials, the energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) results reveal high concentrations of oxygen containing products, and the EPR results demonstrate the presence of the peroxyl radicals (RO2 • ) in the kink-banded areas. After one year of dark ambient storage, very long-lived RO2 • radicals were observed primarily in the samples exposed to ageing conditions of elevated temperatures, humidity, and mechanical stress. The total percentage of crystallinity, as measured by differential scanning calorimetry, of the kinkbanded fibers was unchanged, indicating that the degradation occurs primarily in the amorphous region, and may also involve recrystallization processes of the degraded chains. However, the most abundant orthorhombic crystalline phase decreases from 77 % to 70 %. This decrease in the orthorhombic structure leads to more diffusion of oxygen into the kink-banded region, enhancing the oxidation processes. No changes are observed in the monoclinic phase of the kinked fibers, which remained constant and constituted ~2 % of the total crystallinity.

11.
Radiat Phys Chem Oxf Engl 1993 ; 143: 47-52, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29230084

RESUMO

Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. Through utilization of a biorefinery concept, nanocellulose can be produced in large volumes from wood at relatively low cost via ionizing radiation processing. Ionizing radiation causes significant break down of the polysaccharide and leads to the production of potentially useful gaseous products such as H2 and CO. The application of radiation processing to the production of nanocellulose from woody and non-wood sources, such as field grasses, bio-refining byproducts, industrial pulp waste, and agricultural surplus materials remains an open field, ripe for innovation and application. Elucidating the mechanisms of the radiolytic decomposition of cellulose and the mass generation of nanocellulose by radiation processing is key to tapping into this source of nanocelluose for the growth of nanocellulostic-product development. More importantly, understanding the structural break-up of the cell walls as a function of radiation exposure is a key goal and only through careful, detailed characterization and dimensional metrology can this be achieved at the level of detail that is needed to further the growth of large scale radiation processing of plant materials. This work is resulting from strong collaborations between NIST and its academic partners who are pursuing the unique demonstration of applied ionizing radiation processing to plant materials as well as the development of manufacturing metrology for novel nanomaterials.

12.
J Mater Sci Mater Med ; 28(12): 185, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29039618

RESUMO

We have developed novel photopolymer gels to function as separators in blood collection tubes. By incorporating antioxidants such as α-tocopherol and nitroxides (TEMPO and TEMPOL), the new formulation can be sterilized with electron beam or gamma rays at a dose level of 17 kGy, without inducing premature curing of the photopolymers. For the blood separator gels that contain α-tocopherol, our results show that α-tocopherol plays a decisive role in impeding C-centered free radical propagation reactions through an H-transfer mechanism. This mechanism involves the transfer of an H-atom from the hydroxyl group (OH) of α-tocopherol to the propagating C-centered radical leading to the termination of the polymerization. The sterilization radiation-induced premature curing of the photopolymer was also prevented in the blood separator gel containing nitroxides. For the gels containing TEMPO or TEMPOL, inhibition of the premature curing was achieved through an addition reaction or an H-transfer reaction, respectively. Our results also show that while α-tocopherol is not a contributing factor in the subsequent (time-of-use) UV curing of the gels, nitroxides enhance the UV curing process through nitroxide-mediated living free radical polymerization reactions leading to a decrease in UV curing time. The photopolymer separator gels are shown to function advantageously in clinical laboratory testing, especially for cell-free DNA measurements in blood.


Assuntos
Raios gama , Polímeros/química , Esterilização/métodos , Raios Ultravioleta , Animais , Antioxidantes/química , Óxidos N-Cíclicos/química , Géis , Teste de Materiais , Polímeros/efeitos da radiação , Marcadores de Spin , Raios X , alfa-Tocoferol/química
13.
Biomaterials ; 147: 14-25, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28923682

RESUMO

Nanocarriers (NCs) help improve the performance of therapeutics, but their removal by phagocytes in the liver, spleen, tissues, etc. diminishes this potential. Although NC functionalization with polyethylene glycol (PEG) lowers interaction with phagocytes, it also reduces interactions with tissue cells. Coating NCs with CD47, a protein expressed by body cells to avoid phagocytic removal, offers an alternative. Previous studies showed that coating CD47 on non-targeted NCs reduces phagocytosis, but whether this alters binding and endocytosis of actively-targeted NCs remains unknown. To evaluate this, we used polymer NCs targeted to ICAM-1, a receptor overexpressed in many diseases. Co-coating of CD47 on anti-ICAM NCs reduced macrophage phagocytosis by ∼50% for up to 24 h, while increasing endothelial-cell targeting by ∼87% over control anti-ICAM/IgG NCs. Anti-ICAM/CD47 NCs were endocytosed via the CAM-mediated pathway with efficiency similar (0.99-fold) to anti-ICAM/IgG NCs. Comparable outcomes were observed for NCs targeted to PECAM-1 or transferrin receptor, suggesting broad applicability. When injected in mice, anti-ICAM/CD47 NCs reduced liver and spleen uptake by ∼30-50% and increased lung targeting by ∼2-fold (∼10-fold over IgG NCs). Therefore, co-coating NCs with CD47 and targeting moieties reduces macrophage phagocytosis and improves targeted uptake. This strategy may significantly improve the efficacy of targeted drug NCs.


Assuntos
Portadores de Fármacos/química , Molécula 1 de Adesão Intercelular/metabolismo , Nanoestruturas/química , Animais , Antígeno CD47/metabolismo , Endocitose , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Fagocitose , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Receptores da Transferrina/metabolismo , Baço/metabolismo , Propriedades de Superfície
14.
Ind Eng Chem Res ; 55(15): 4179-5214, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29720786

RESUMO

In order to test the effectiveness of oxalate-based polymeric adsorbents in the recovery of uranium from seawater, diallyl oxalate (DAOx) was grafted onto nylon 6 fabrics by exposing the fabric, immersed in pure liquid DAOx or in a surfactant-stabilized dispersion of DAOx in water, to electron beam or gamma radiation. Following drying and weighing to determine the degree of grafting (DoG), the presence of oxalate in the fabrics was verified using XPS. Zeta potential measurements showed the fabric surfaces to be negatively charged. The fabrics were tested by rotating them for 7 days in a rotary agitator with actual seawater spiked with 0.2 or 1.0 mg∙L-1 uranium. The fraction of uranium in the solution which was removed due to uptake on the fabrics was found to rise with increasing DoG at both uranium concentrations. EDS measurements were used to map the distribution of adsorbed uranium on the polymeric fibers.

15.
J Control Release ; 188: 87-98, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24933603

RESUMO

Designing of drug nanocarriers to aid delivery of therapeutics is an expanding field that can improve medical treatments. Nanocarriers are often functionalized with elements that recognize cell-surface molecules involved in subcellular transport to improve targeting and endocytosis of therapeutics. Combination-targeting using several affinity elements further modulates this outcome. The most studied example is endothelial targeting via multiple cell adhesion molecules (CAMs), which mimics the strategy of leukocytes to adhere and traverse the vascular endothelium. Yet, the implications of this strategy on intracellular transport and in vivo biodistribution remain uncharacterized. We examined this using nanocarriers functionalized for dual- or triple-targeting to intercellular, platelet-endothelial, and/or vascular CAMs (ICAM-1, PECAM-1, VCAM-1). These molecules differ in expression level, location, pathological stimulation, and/or endocytic pathway. In endothelial cells, binding of PECAM-1/VCAM-1-targeted nanocarriers was intermediate to single-targeted counterparts and enhanced in disease-like conditions. ICAM-1/PECAM-1-targeted nanocarriers surpassed PECAM-1/VCAM-1 in control, but showed lower selectivity toward disease-like conditions. Triple-targeting resulted in binding similar to ICAM-1/PECAM-1 combination and displayed the highest selectivity in disease-like conditions. All combinations were effectively internalized by the cells, with slightly better performance when targeting receptors of different endocytic pathways. In vivo, ICAM-1/PECAM-1-targeted nanocarriers outperformed PECAM-1/VCAM-1 in control and disease-like conditions, and triple-targeted counterparts slightly enhanced this outcome in some organs. As a result, delivery of a model therapeutic cargo (acid sphingomyelinase, deficient in Niemann-Pick disease A-B) was enhanced to all affected organs by triple-targeted nanocarriers, particularly in disease-like conditions. Therefore, multi-CAM targeting may aid the optimization of some therapeutic nanocarriers, where the combination and multiplicity of the affinity moieties utilized allow modulation of targeting performance.


Assuntos
Portadores de Fármacos/metabolismo , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Nanopartículas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Linhagem Celular , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Endocitose , Humanos , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Nanopartículas/química , Distribuição Tecidual
16.
J Biomater Sci Polym Ed ; 24(15): 1781-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23742132

RESUMO

In vitro and in vivo experimentation of various synthetic polymer hydrogels was conducted to establish some of the integral material properties that influence hemostasis. In vitro swelling experiments suggested that positive electrostatic charge was a key determinant of the ability of a polymer hydrogel to absorb physiological fluids, e.g. human plasma and blood. In vitro testing using unadulterated sheep blood suggested positive electrostatic charge and crosslink density were key determinants of the ability of a material to induce or enhance clot formation. Hydrogel formulations composed of higher amounts of positive electrostatic charge and lower crosslink density were able to effectively induce and enhance clot formation in the presence of a coagulation cascade activator. In vivo experimentation confirmed that hydrogels containing higher electrostatic charge and low crosslink density are more effective at fostering the formation of a robust hemostatic plug to control blood loss.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Hidrogéis/farmacologia , Polímeros/farmacologia , Animais , Anticoagulantes/síntese química , Histocitoquímica , Humanos , Hidrogéis/síntese química , Fígado/lesões , Lesão Pulmonar/sangue , Lesão Pulmonar/terapia , Polímeros/síntese química , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...